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Event Generation and Simulation Needs for the EIC
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The role of AI/ML in simulations
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Summary ket oy

* Simulations essential for design of experiments, data
analysis, and verification of measurements.

* Simulations for the EIC, i.e. MCEGs and fast and full
detector simulations for the EIC, require R&D. We miss
core capabilities and we need to work towards accuracy
and precision.

* Simulation R&D is most efficiently done in common
projects and in collaboration with other fields, e.g., HEP
or data science.

* Many opportunities for Al/ML to complement and
improve simulations. While Al/ML approaches will
substitute part of simulation workflows, they will not
replace core tools, e.g., general-purpose MCEGs or
Geant4.
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SIMULATIONS:
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SIMULATION BOTTLENECKS

Many particles, many components, many steps

= Usually bottlenecks occur where the particle
count is high, e.g. as part of a calorimeter
shower, or optical photons in a RICH.

= Bottlenecks can also occur in when navigating
very detailed geometries (e.g. fiber
calorimeters with millions of fibers).

= Finally, scenarios where we need many
precise steps through a magnetic field (for
upstream & downstream near-beamline
detection) is relatively expensive.

= Often multiple bottlenecks at once.
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SUMMARY

= Short-term: need large-scale simulations for
optimization of a complex detector system.

= Long-term: need (even larger)-scale

simulations to properly analyze high-
luminosity/high-precision measurements.

» Bottlenecks usually a combination between
many particles, many geometry elements
and/or many simulation steps.

= Calorimetry, Cherenkov detectors and the
far-forward/far-backward regions are prime

targets for Al-driven acceleration.
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Generative Adversarial

! @~ GEANT

3 ¢" GAN © " GEANT £ #” GAN
1oll‘ y GEANT [y GAN 10° y GEANT [y GAN
H m" GEANT n' GAN n' GEANT n' GAN
o
2 10!
| v
-1 aa
10 ! ‘—\'\\’f" & 10—2
1073
! 10°3
-3
=) 10-*
-4
10 ' s
10-5 i
L 10°% ]
1072 107t 10° 10! 107! 10° 10 10¢
Ep (GeV) Ey (GeV)

caloGAN (ATLAS)
Paganini, et. al [1712.10321]

Silicon- Tungsten
calorimeter of the proposed
International Large Detector

Buhmann, et. al

[2005.05334]

Simulation
Networks

{ e* GEANT [ o* GAN o° GEANT [ o~ GAN
10!/ Y GEANT [y GAN 1072 y GEANT [y GAN
;: r.‘ ' GEANT m' GAN n" GEANT n' GAN
10°,
10—? Jn.
101
1072 10-3
10734
i 107¢
10%
1075 10-5
i _ il
10°¢ 107! 109 10° 10° 0 25 '50 75 100 125
E; (GeV) Eiee (GeV)
10" MoV o
' ’ ! e 1' ' " : {
5 iz W 5 '3
B g L todedlen 3 2
I ' f > ""; m > S
, : 107 MoV ' $ ,f: A b '\f I
R L ' L daddt |
b2 B i A :
Tt by 2 ' i 4
LA /D
& ' N
: & : : , £
z “ﬂ)fc'nj a 107 MoV z Hnye,w ’ z H«yg,w “llayers)

Fig. 5 Examples of individual 50 GeV photon showers generated by Geant4 (left), the GAN (center left), WGAN (center
right), and BIB-AE (right) architectures. Colors encode the deposited energy per cell.
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Summary

* Aihas the potential for large impacts on Simulation for
the EIC.

* Large body of prior related work. Often at “bleeding
edge” of Al research. Less commonly used for simulation
in practice. Requires work.

* Simulation R&D is most efficiently done in common
projects and in collaboration with other fields, e.g., HEP
or data science.

« Do not expect replacement of core tools, e.g.,
general-purpose MCEGs or Geant4.




Generative ML applications

for simulations In colliders

Benjamin Nachman
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M. Paganini, L. de Oliveira, B. Nachman, 1705.02355

Batch Size | milliseconds/shower

Generation Method | Hardware
GEANT4 CPU N/A
1
CPU L
Intel Xeon 128
E5-2670 | 1024
CALOGAN 1
4
GPU 128
NVIDIA K8o | 912
1024

5.1
21
2.03
3.68
0.021
0.014
0.012

h

(clearly these numbers have changed as both technologies have
improved - this is simply meant to be qualitative & motivating!)



ATLAS Collaboration, 2109.02551

Integration into real detector sim.

: Muon
Calorimeters
Detector Spectrometer

FastCaloSimv2

FastCalo | FastCalo | FastCalo Muon
Sim V2 GAN Sim V2 Punchthrough
By < (8-16)GeV | (8—16) GeV < By, (B> (256~ 512) GeV +Geant4

The ATLAS Collaboration fast simulation (AF3) now
includes a GAN at intermediate energies for pions



Conclusions and Outlook

Generative models hold great promise for enhancing,
supplanting, and extending simulations for collider physics

All of the techniques | Deep Generative Models

discussed today could be for Fundamental Physics
used for physics at the EIC!

March 17, 2021
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ML for LHCb Simulations

HCD

I N F N Istituto Nazionale di Fisica Nucleare
SEZIONE DI FIRENZE

Machine Learning

for the LHCb Simulations

Lucio Anderlini on behalf of the LHCb Collaboration
[stituto Nazionale di Fisica Nucleare — Sezione di Firenze
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I V. for LHCb Simulations

Standard simulation: the big picture
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I V. for LHCb Simulations

Our ML building block

z = F_l(}ﬁp,q,..j)

Target Random Conditions
variable noise

Random Generative Adversarial Networks
noise
Normalizing Flows Some
& detector-related
L. uantities

a3 Variational AutoEncoder q
Conditions
(e.g. momentum)
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I . /or LHCh Simulations

Approaches to ML in simulation

Lucio Anderlini
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Only replace with ML parts of the radiation-matter interaction, in the showers.

S. Vallecorsa et al. EP) Web Conf,, 214 (2019) 02010
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I V. for LHCb Simulations

Approaches to ML in simulation

< - ™ & a! 0 ok
_______________________________________________________________ et 10 - 10 1:’ 10 " 150 10 150
: . i (4« BE e :-15 & i; %_;5 123 ; “
i Simulatill - = - ot -
" 25 s 25 22 i o
l Physics generator — e, W
: f \ = | {25 . ix . 7:,, 2.00
: g B g l; M 16 175 175
1 e A 14 50 150
1 15 { 35 - = 12% 125
: é?‘o (_3;0- . 20 ;: 00 100
A - 07s 0.5
: ’ A (oY) D> s v 2 06 e s
- 4 5 .: o o o 0 0 0 g 20 0 0 i 0
| Radiation-matter - i 5
. j ; L & : b (©) G
1 —~ O (a) (b)
.| Interaction T = E, = 63.7 GeV E, = 6.5 GeV Ey = 15.6 GeV Eo = 159 GeV
| 25 — 1 T y :
| = = | | : & @ . :
| ; 8 L | ' | User-defined | !
1 | I | o 1
: : — : | | ' | analysis |
i L CEOnIcS : i *-Taggin I . | procedure |
= e - | I Y I 1
| (digitization) | | s5lls | ' |
! ! ! ! I 1
| L : s et LR |
e T e R I S L N e I e T e S ot e P T gy g S R DR B g Lo Sty e D ) e R N AT it e L r P SR S g N |
.
Take advantage of the granularity of the calorimeter readout to simplify the network ~  Paper ]

F. Ratnikov et al. EP) Web Conf., 245 (2020) 02026
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I . forlHChSimulations

Approaches to ML in simulation

Simulation
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A. Maevskiy et al. J. Phys.: Conf. Ser. 1525 012097 (2020)
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I . forlHChSimulations

Conclusion 2

Many studies are ongoing to use machine learning to speed up the simulation, taking
different approaches:

e simulating the radiation-matter interaction faster
e simulating the response of some detector
e simulating the whole simulation pipeline to reconstructed analysis level quantities

The various solutions are all important as they can all help speeding the simulation up.
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To sum up

* Simulation is one of the least advanced areas in the use of Al/ML.
 Many ideas, opportunities
* Require works — resource allocation needed

* Two phases

 Simulation-driven detector optimization with boost of Al/ML (~ 5 years)

 Fully tailored simulation with maximum use of Al/ML to meet the statistics requirements (~
decade(s))

* Do not expect Al/ML to fully replace core tools, e.g. MCEGs or Geant4.
* Training, validation

* Modular approach
e Calorimeter, optical photon detector for PID, very-forward detectors, machine-detector
interface, background (neutron, beam halo, etc.) are good start.

e Simulation R&D is most efficiently done in common project and in collaboration
with other fields. Engagement with broader Al/Comp.Sci. community is valuable

* Expect engagement to include data sharing and bidirectional contributions



